China high quality Water (Liquid) Ring Vacuum Pump vacuum pump connector

Product Description

 

Water (Liquid) Ring Vacuum Pump

1. Series SK,2SK Water Ring Vacuum Pumps can be used to exhaust ordinary gases as well as condensable gases(such as water vapor). Because they have the features of isothermal compression, they can exhaust flammable and explosive gases. When the pump made up of anti-corrosion material is selected, it can be used for exhausting corrosive gases too.

 

2. Series 2YK Liquid Ring Vacuum Pumps have the features of higher vacuum and better applicability. The different types of gases can be pumped with the selected suitable working media. Therefore, they can be applied in wider range.

 

3. The pumps run smoothly with low noise and consumption. The energy-saving is 30 percent comparing with the Water Jet and the Water VaporJet Pumps.

 

APPLICATIONS:

It can be applied to the vacuum drying, vacuum degassing, vacuum concentration, vacuum evaporation, vacuum impregnation process in chemical industry, food, medicine, textile, papermaking, electrical industry and so on. It can compose a vacuum system together with Roots Vacuum Pump and atmospheric Jet pump to achieve high vacuum, high efficiency, low power consumption.

 

SPECIFICATIONS:

Model

Displacement
(m3/min)

Ultimate Pressure

Motor   Power    (kW)

Rotating Speed(rpm)

Water Supply(L/min)

Inlet&Outlet Dimensions
(mm)

Weight
              (kg)

hPa Torr
SK-0.5B 0.5 47 35 1.5 2900 8 25 45
SK-0.8 0.8 47 35 2.2 2900 10 40 60
SK-1.5 1.5 47 35 4 2900 15 40 75
SK-3 3 80 60 5.5 1450 25 50 153
SK-6 6 80 60 11 1450 35 50 210
SK-12 12 80 60 22 980 70 100 600
SK-12B 12 80 60 18.5 980 60 100 450
SK-25 25 80 60 45 980 70 100 900
SK-30 30 80 60 55 980 75 100 1200
SK-42 42 80 60 75 740 100 100 1500
2SK-2B 2 40 30 5.5 1450 20 50 185
2YK-2B 2 6.6 5 5.5 1450 20 50 185
2SK-3 3 40 30 7.5 1450 25 50 320
2YK-3 3 6.6 5 7.5 1450 25 50 320
2SK-6B 6 33 30 11 1450 35 50 370
2YK-6B 6 6.6 5 11 1450 35 50 370
2SK-12 12 33 25 22 980 70 80 850
2YK-12 12 6.6 5 22 980 70 80 850
2SK-25 25 33 25 55,45 980 60-110 100 926
2YK-25 25 6.6 5 55,45 980 60-110 100 926

 

Regular Selection for Water(Liquid)Ring Vacuum Pump

1,Baced on the vacuum value

(1)If the pump is operated for long time with the inlet pressure range between1.3×104~1×105Pa (between 100 and 760 Torr), please choose series SK Water Ring Vacuum Pump.

(2)If the pump is operated for long time with the inlet pressure range between5×103~1.3×104Pa(between40 and 100 Torr), please choose series 2SK Water Ring Vacuum Pump.

(3)If the pump is operated for long time with the inlet pressure range between1×103~1.3×104Pa(between8 and 100 Torr), please choose series 2YK Liquid Ring Vacuum Pump.

 

2,Working Media 

There are 4 principles to choose working media(i.e.ring liquids);

(1) Lower saturated steam pressure

(2) Lower viscosity

(3) Stable physical & chemical features; no chemical reaction with the pumped gas;no corrosion to the pump; no pollution to the environment.

(4) Economy

      If the water is selected as the working medium, the best temperature of supply water should be lower than or equal to 15 °C; the highest 1 should not be higher than 40°C. While the transformer oil or other low viscosity and saturated vapor pressure industrial oils are as the working media, the general supply temperature should not higher than 40°C and the working media temperature inside the pump chamber should not be higher than 60C, when the liquid with lower boilling point is selected as the working media under some special circumstances, the cooling unit must be equipped to cool down the working media in order to ensure that the max temperature is 30ºC-50ºC, lower than the boiling point. For the closed circulated system of working media, the liquid storage unit and cooler must be equipped, and the gas-liquid separator must be installed at outlet. The mechanical seal should be used for dynamic seal of the shaft.

 

3,Choose the dynamic seal of the shaft:

Choose the packing seal in general occasion; choose the meachanical seal when the pump is used in no leak occasion.

 

4,Choose the material of the part that the gas passed:

(1) For the non anti-corrosion pump, the shaft is made of 45#steel or 40Cr, other parts are made of cast Iron or brass;

(2) For the anti-corrosion pump,the parts that the gas passed, should be made of stainless steel 304 and 306, or other material suitable for the respectively corrosive gas, or the parts should be put with anti-corrosion coating.

 

5, The motor should be selected based on pumping pressure.

If the pump is used for vacuuming while transferring gas, the pressure of pump outlet exceeds the standard atmosphere pressure. When the outlet pressure exceeds 0.15MPa, the special double-stages liquid ring compressor should be chosen and not the vacuum pump refitted. Tthe power of the equipped motor should be increased obviously. And the speclal gas-liquid separator and auto-drain unit should be equipped too.

When the outlet pressure is below 0.15MPa, it can use the vacuum pump refitted as compressor. The power of the equipped motor should be increased properly.

 

6,Composition methods of the water ring vacuum pump system

The opening circulation system should be used if the working liquid in the outlet need not be circulated or partially circulated.

The closed circulation system should be used if the working liquid in the outlet must be circulated and cannot be discharged.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry
Transport Package: Standard Export Package
Customization:
Available

|

Vacuum Pump

Types of vacuum pumps

A vacuum pump is a device that draws gas molecules from a sealed volume and leaves a partial vacuum in its wake. Its job is to create a relative vacuum within a specific volume or volume. There are many types of vacuum pumps, including centrifugal, screw and diaphragm.

Forward centrifugal pump

Positive displacement centrifugal vacuum pumps are one of the most commonly used pump types in the oil and gas industry. Their efficiency is limited to a range of materials and can handle relatively high solids concentrations. However, using these pumps has some advantages over other types of pumps.
Positive displacement pumps have an enlarged cavity on the suction side and a reduced cavity on the discharge side. This makes them ideal for applications involving high viscosity fluids and high pressures. Their design makes it possible to precisely measure and control the amount of liquid pumped. Positive displacement pumps are also ideal for applications requiring precise metering.
Positive displacement pumps are superior to centrifugal pumps in several ways. They can handle higher viscosity materials than centrifuges. These pumps also operate at lower speeds than centrifugal pumps, which makes them more suitable for certain applications. Positive displacement pumps are also less prone to wear.
Positive displacement vacuum pumps operate by drawing fluid into a chamber and expanding it to a larger volume, then venting it to the atmosphere. This process happens several times per second. When maximum expansion is reached, the intake valve closes, the exhaust valve opens, and fluid is ejected. Positive displacement vacuum pumps are highly efficient and commonly used in many industries.

Self-priming centrifugal pump

Self-priming centrifugal pumps are designed with a water reservoir to help remove air from the pump. This water is then recirculated throughout the pump, allowing the pump to run without air. The water reservoir can be located above or in front of the impeller. The pump can then reserve water for the initial start.
The casing of the pump contains an increasingly larger channel forming a cavity retainer and semi-double volute. When water enters the pump through channel A, it flows back to the impeller through channels B-C. When the pump is started a second time, the water in the pump body will be recirculated back through the impeller. This recycling process happens automatically.
These pumps are available in a variety of models and materials. They feature special stainless steel castings that are corrosion and wear-resistant. They can be used in high-pressure applications and their design eliminates the need for inlet check valves and intermediate valves. They can also be equipped with long intake pipes, which do not require activation.
Self-priming centrifugal pumps are designed to run on their own, but there are some limitations. They cannot operate without a liquid source. A foot valve or external liquid source can help you start the self-priming pump.

Screw Pump

The mechanical and thermal characteristics of a screw vacuum pump are critical to its operation. They feature a small gap between the rotor and stator to minimize backflow and thermal growth. Temperature is a key factor in their performance, so they have an internal cooling system that uses water that circulates through the pump’s stator channels. The pump is equipped with a thermostatically controlled valve to regulate the water flow. Also includes a thermostatic switch for thermal control.
Screw vacuum pumps work by trapping gas in the space between the rotor and the housing. The gas is then moved to the exhaust port, where it is expelled at atmospheric pressure. The tapered discharge end of the screw further reduces the volume of gas trapped in the chamber. These two factors allow the pump to work efficiently and safely.
Screw vacuum pumps are designed for a variety of applications. In some applications, the pump needs to operate at very low pressures, such as when pumping large volumes of air. For this application, the SCREWLINE SP pump is ideal. Their low discharge temperature and direct pumping path ensure industrial process uptime. These pumps also feature non-contact shaft seals to reduce mechanical wear. Additionally, they feature a special cantilever bearing arrangement to eliminate potential sources of bearing failure and lubrication contamination.
Screw vacuum pumps use an air-cooled screw to generate a vacuum. They are compact, and clean, and have a remote monitoring system with built-in intelligence. By using the app, users can monitor pump performance remotely.
Vacuum Pump

Diaphragm Pump

Diaphragm vacuum pumps are one of the most common types of vacuum pumps found in laboratories and manufacturing facilities. The diaphragm is an elastomeric membrane held in place around the outer diameter. While it is not possible to seal a diaphragm vacuum pump, there are ways to alleviate the problems associated with this design.
Diaphragm vacuum pumps are versatile and can be used in a variety of clean vacuum applications. These pumps are commercially available with a built-in valve system, but they can also be modified to include one. Because diaphragm pumps are so versatile, it’s important to choose the right type for the job. Understanding how pumps work will help you match the right pump to the right application.
Diaphragm vacuum pumps offer a wide range of advantages, including an extremely long service life. Most diaphragm pumps can last up to ten thousand hours. However, they may be inefficient for processes that require deep vacuum, in which case alternative technologies may be required. Additionally, due to the physics of diaphragm pumps, the size of these pumps may be limited. Also, they are not suitable for high-speed pumping.
Diaphragm vacuum pumps are a versatile subset of laboratory pumps. They are popular for their oil-free construction and low maintenance operation. They are available in a variety of styles and have many optional features. In addition to low maintenance operation, they are chemically resistant and can be used with a variety of sample types. However, diaphragm pumps tend to have lower displacements than other vacuum pumps.

Atmospheric pressure is a key factor in a vacuum pump system

Atmospheric pressure is the pressure created by the collision of air molecules. The more they collide, the greater the pressure. This applies to pure gases and mixtures. When you measure atmospheric pressure, the pressure gauge reads about 14.7 psia. The higher the pressure, the greater the force on the gas molecules.
The gas entering the vacuum pump system is below atmospheric pressure and may contain entrained liquids. The mechanism of this process can be explained by molecular kinetic energy theory. The theory assumes that gas molecules in the atmosphere have high velocities. The resulting gas molecules will then start moving in random directions, colliding with each other and creating pressure on the walls of the vacuum vessel.
Atmospheric pressure is a critical factor in a vacuum pump system. A vacuum pump system is useless without proper atmospheric pressure measurement. The pressure in the atmosphere is the total pressure of all gases, including nitrogen and oxygen. Using total pressure instead of partial pressure can cause problems. The thermal conductivity of various gases varies widely, so working at full pressure can be dangerous.
When choosing a vacuum pump, consider its operating range. Some pumps operate at low atmospheric pressure, while others are designed to operate at high or ultra-high pressure. Different types of pumps employ different technologies that enhance their unique advantages.
Vacuum Pump

The screw pump is less efficient in pumping gases with smaller molecular weight

Vacuuming requires a high-quality pump. This type of pump must be able to pump gas of high purity and very low pressure. Screw pumps can be used in laboratory applications and are more efficient when pumping small molecular weight gases. Chemical resistance is critical to pump life. Chemical resistant materials are also available. Chemically resistant wetted materials minimize wear.
Gear pumps are more efficient than screw pumps, but are less efficient when pumping lower molecular weight gases. Gear pumps also require a larger motor to achieve the same pumping capacity. Compared to gear pumps, progressive cavity pumps also have lower noise levels and longer service life. In addition, gear pumps have a large footprint and are not suitable for tight spaces.
Progressive cavity pumps have two or three screws and a housing and side cover. They are also equipped with gears and bearings. Their mechanical design allows them to operate in high pressure environments with extremely low noise. The progressive cavity pump is a versatile pump that can be used in a variety of applications.
Dry screw compressors have different aspect ratios and can operate at high and low pressures. The maximum allowable differential pressure for screw compressors ranges from 0.4 MPa for 3/5 rotors to 1.5 MPa for 4/6 rotors. These numbers need to be determined on a case-by-case basis.

China high quality Water (Liquid) Ring Vacuum Pump   vacuum pump connector	China high quality Water (Liquid) Ring Vacuum Pump   vacuum pump connector
editor by CX 2024-03-30

Vacuum Pump

As one of the vacuum pump manufacturers, suppliers, and exporters of mechanical products, We offer vacuum pumps and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of the vacuum pump.

Recent Posts